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An integrated multi-physics simulation capability
for the design and analysis of current and future
nuclear reactor models is being investigated, to
tightly couple neutron transport and thermal-
hydraulics physics under the SHARP framework.
Over several years, high-fidelity, validated mono-
physics solvers with proven scalability on petascale
architectures have been developed independently.
Based on a unified component-based architecture,
these existing codes can be coupled with a mesh-data
backplane and a flexible coupling-strategy-based
driver suite to produce a viable tool for analysts.
The goal of the SHARP framework is to perform
fully resolved coupled physics analysis of a
reactor on heterogeneous geometry, in order to
reduce the overall numerical uncertainty while
leveraging available computational resources. The
coupling methodology and software interfaces of
the framework are presented, along with verification
studies on two representative fast sodium-cooled
reactor demonstration problems to prove the usability
of the SHARP framework.

1. Introduction
High-fidelity computer simulations of multi-physics
problems require solving large systems of complex,
coupled, nonlinear, stiff equations. Many examples of
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nonlinear multi-physics phenomena occur in a spectrum of scientific fields, raising the need to
develop and validate accurate and stable numerical modelling and solution procedures. Such
robust coupling methods are often used in radiation hydrodynamics, nuclear reactor analysis,
fluid–structure interaction and climate model problems because of the need to accurately resolve
the fine-scale effects in physics evolution [1].

Traditional solution techniques for coupled multi-physics phenomena have often relied on
operator-split (OS) coupling strategies, which can introduce several sources of numerical errors
in the solution fields as a result of inconsistent spatio-temporal treatment of the nonlinear terms.
It is imperative to verify the accuracy preservation in these methods for problems of interest since
effective resolution of the disparate characteristic physical scales is non-trivial. In this paper, we
introduce an integrated multi-physics coupling capability with a multi-resolution hierarchy that
is designed to ultimately span the full range of length and time scales present in relevant nuclear
reactor design and safety analyses.

In order to produce a flexible multi-physics simulation capability, two obvious approaches
can be pursued. In one approach, pieces of existing single-physics codes can be assembled
into an overall coupled simulation code with appropriate interfaces to communicate between
the components. This is generally referred to as a ‘bottom-up’ framework approach (MCT [2],
SHARP [3,4]). The other approach is to use an integrated, coupled-physics modelling framework,
with new code pieces for each relevant physics area developed inside that framework. This is
sometimes referred to as a ‘top-down’ framework approach (DUNE [5], MOOSE [6], KARMA [7],
among several others). The former approach takes advantage of the fact that several man-years
invested in these existing verified and validated individual physics modelling codes are reusable,
but producing a multi-physics capability will then require some intrusive modifications to
enable appropriate software interfaces. The top-down framework approach avoids such intrusive
implementations by providing unified physics interface guidelines that simplify the software
overhead but at the substantial cost of re-writing all the necessary physics models from scratch,
including their verification and validation (V&V) suites.

The implementation of a verified multi-physics solver code also imposes a number of
requirements on the overall design aspects of the framework. Hence we need flexible interfaces
and robust solver options that encompass variations in a hierarchy of coupling algorithms
affecting the frequency and degree of coupling between the physics. Since the choice of
a coupling method is both physics and problem-specific, SHARP includes a spectrum of
numerical techniques to tackle the relevant scales in physical phenomena that is relevant
to nuclear reactor design. The necessary background on the methods is provided in the
following sections.

(a) Background
For illustration, let the nonlinear vector-valued function representing a coupled partial differential
equation (PDE) system be written in a general form as

F(y) = N(y)y − b = 0, (1.1)

where y is the solution vector that is dependent on both space and time, respectively, and F :
Rn → Rn, where F is the nonlinear operator representing the coupled system and n is the total
number of unknowns. For ease of comprehension, we can write F as in the second equality of
equation (1.1), where N is also a nonlinear operator and b is the load vector. It helps to represent
y as a vector comprised of the solution vector for each of the M physics components involved,
i.e. [y1, y2, . . . , yM]T. A similar definition holds for F(y), and its mth component is the nonlinear
residual stemming from the mth physics component and may depend effectively on all other
fields, for example, Fm(y) = Fm(y1, y2, . . . , yM).

 on December 22, 2014http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130381

.........................................................

neutronics

tn–1 tn+1 tn+2

power(tn+2)
power(tn)power(tn–1)

(a)

(b)

temperature(tn–1)
density(tn–1)

temperature(tn+1)
density(tn+1)

temperature(tn)
density(tn)

tn

thermal
hydraulics

thermal
hydraulics

neutronics

neutronics

tn–1 tn+1 tn+2

power(tn) power(tn+1)

temperature(tn–1)
density(tn–1) temperature(tn+1)

density(tn+1)
temperature(tn)

density(tn)

tn

thermal
hydraulics

thermal
hydraulics

neutronics

Figure 1. Two lower order OS coupling strategies. (a) Simultaneous OS coupling and (b) staggered OS coupling. (Online version
in colour.)

(b) Explicit coupling strategies
In the past few decades, high-fidelity modelling of nonlinear multi-physics problems has been
subdivided into several distinct domains of physics and solved individually as mono-disciplinary
blocks with specialized codes, without rigorous coupling between the different physics using
OS. With the advent of parallel virtual machines and the message passing interfaces (MPI) in
the 1990s, the OS coupling of several existing specialized single physics codes has become the
main multi-physics paradigm in reactor analysis. This kind of modelling is based on coupling
several existing specialized mono-disciplinary codes using a ‘black-box’ strategy, where the
input of one code is the output of other, thereby producing solutions that are weakly coupled.
Schematics of such models are shown in figure 1, where the system of PDEs arising from the
spatial and temporal discretization of physical models is decomposed into simpler subproblems.
Each physics component is solved by an independent, specialized single-physics code and the
data between codes are exchanged through message passing paradigms. Often, this strategy is
non-iterative, and the nonlinearities due to the coupling between the physics components are not
resolved over a time step, reducing the overall accuracy in the time-stepping procedure to first
order O(�t), even though high-order time integration might have been used for the individual
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physics components [8,9]. Note that this explicit linearization of the problem in the OS strategy
does not resolve the nonlinearities between the different physics. Yet, these isolated physical
models in reality describe physical phenomena that are tightly intertwined and rely heavily on
the solution field of each other.

For illustration, consider the nonlinear coupled system shown in equation (1.1). In the OS loose
coupling strategy, the nonlinear operator is linearized as follows through an explicit treatment:

F(y�+1) = N(y�)y�+1 − b. (1.2)

Hence the new update to the solution is obtained by solving the system

N(y�)y�+1 = b. (1.3)

Although OS allows parts of the problem to be treated implicitly and others explicitly, the
lack of iterations in the conventional strategy degrades the solution accuracy in time to
first order, and the explicit linearization imposes a conditional stability limit for the time-
step selection. The direct implication of using smaller time steps to achieve a reasonable
accuracy is that the computations need greater CPU time and resources. Despite these
drawbacks, this is still one of the major coupling paradigms used today for solving nonlinear
multi-physics systems.

The attractive feature of such a coupling strategy is that the legacy of many man-years
of mono-disciplinary code development and V&V is preserved. It is of prime importance to
analyse the coupling strategies that can produce highly accurate solutions even in the complex
scenarios usually encountered in multi-physics applications. As mentioned earlier, nuclear reactor
analysis is a good example of a highly nonlinear, coupled, stiff problem, and the nonlinearities at
the heart of reactor design, analysis and safety calculations provide a good state-space to test
robust, high-fidelity numerical methods for multi-physics problems. Physical phenomena such
as those found in reactor accidents involve rapidly varying transients yielding stiff systems of
differential equations that are characterized by solutions having fast varying modes together with
slower varying modes, requiring time integrators that can handle such disparate time scales. Stiff
problems necessitate the use of implicit time discretization for stability reasons, indicating that
non-iterative OS coupling could prove disadvantageous in terms of efficiency (cost for obtaining
a certain accuracy in the solution).

Current examples of multi-physics coupling in the field of nuclear reactor analysis involve
the following pairs of deterministic neutronics/thermal-hydraulics codes: NURESIM based
on SALOME [10], PARCS/TRACE [11] and NESTLE/RELAP [12] and other variations with
stochastic neutronics methods with MCNP/Star-CCM [13,14]. More recently, research on using
OpenFOAM for performing fine-scale modelling of pressurized water reactor cores [15] has also
been explored with moderate success. Several advanced OS strategies exist that can yield up to
second-order accurate solutions in time, but they are complicated to implement generally in the
context of legacy codes and hence are not typically employed. For more details regarding these
higher order OS schemes, we refer the reader to [16–19]. In this paper, we perform successively
iterated OS schemes that are fully converged via Picard iterations so that the nonlinearities are
resolved at every time step thereby yielding unconditional stability and recovering high-order
accuracy. The linear rate of convergence is accelerated with the Steffensen method and with an
explicit second-order predictor [9].

(c) Implicit coupling strategies
An alternative to explicit or loosely coupled OS strategies is to converge the nonlinearities
between the physics at every time level to obtain a tightly coupled solution that is consistent with
the nonlinear system of PDEs. This preserves the higher order temporal accuracy of specialized
schemes that can be used to resolve the disparate temporal scales in the different physics. Even
though the cost/(time step) can be larger than that of an OS time step, we stress that the stability
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Figure 2. Higher order, converged, iterative split coupling strategy. (Online version in colour.)

of the higher order discretization scheme can be maintained by using this procedure, unlike the
explicit linearization (OS) method where the solution is only conditionally stable.

To devise such a tightly coupled solution procedure, one needs to apply a nonlinear iterative
scheme in order to solve the coupled physics and converge the dependent terms to within user-
specified tolerances. Two techniques for nonlinear system of equations are mentioned next: the
Picard iteration technique (or variations of nonlinear Richardson) and the well-known variants
of Newton’s method via Jacobian-free Newton–Krylov (JFNK) approximations [20]. In this paper,
we will concentrate on the former, because it allows effective reuse of existing physics components
directly and avoids solving large monolithic systems by solving linearized subproblems in a
scalable fashion, thereby reducing the overall computational complexity of the simulation.

The Picard iteration technique is a well-analysed nonlinear method that can be used to
converge the nonlinearities over the different physics when an OS coupling technique is
employed to couple multiple physics codes. Picard iterations can restore the convergence order of
a higher order scheme and eliminate the loss of accuracy due to the crude explicit linearization in
a loosely coupled strategy. The schematic for such a method is shown in figure 2. This essentially
involves iterating over the solution obtained by successively solving equation (1.3).

The advantage of such a coupling scheme is that it is non-intrusive and can easily use an
existing framework of codes to obtain a tightly coupled solution, an approach rightly suited
for SHARP. But the primary disadvantage of using such a strategy to restore the accuracy is
the increase in computational cost due to linear convergence of Picard iterations. In order to
overcome this issue, some form of nonlinear acceleration technique is necessary to make this
scheme efficient and feasible [9]. Previous research using Aitken’s iterated �2 technique suggests
that usage of such acceleration schemes can be advantageous, and efforts to apply the Wynn
epsilon method [21] and other schemes should be pursued as future extensions.

An example discrete coupled system of equations to be solved is of the following form:

J(y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

N1,1(y1) 0 · · · 0

N2,1(y1, y2) N2,2(y2) · · · 0

...
...

. . . 0

NP,1(y1, yP) · · · NP,P−1(yP−1, yP) NP,P(yP)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.4)
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where i, j ∈ [1, P] with P being the total number of coupled physics components, Ni,j represent the
nonlinear block corresponding to physics i coupled to solution from physics j and yi is the ith
physics component solution.

Since the diagonal nonlinear blocks Ni,i(yi)∀i ∈ [1, P] require only the inversion of the
single physics operator, this fixed point iteration procedure can be continued to generate a
sequence of solutions that converge to the true coupled physics fields. Equation (1.4) produces
a global nonlinear Richardson iteration procedure with a Jacobian matrix that resembles
Block–Gauss–Siedel (BGS) coupling between the physics and hence can be solved effectively by
solving sub-problems using existing mono-physics codes. Note that in this general framework,
several different block structured matrices can be used to capture stronger physics coupling
between the components, instead of the BGS scheme shown in equation (1.4).

In this paper, we investigate the bottom-up approach for performing coupled multi-physics
analysis of reactor core systems using the SHARP framework with a flexible options-based
implementation to test both loosely coupled and fully converged (Picard) coupling strategies.
The organization of the paper is as follows. In §2, a brief description of the components of
the SHARP framework is provided along with some implementation details for the interfaces.
Then we show results in §3 on verification studies performed on a fully heterogeneous
assembly-scale problem in order to gauge efficiency and accuracy metrics that give the
necessary foundation for simulating a large-scale, realistic nuclear engineering benchmark
validation problem.

2. SHARP: a coupled multi-physics simulation toolbox
One can construct a multi-physics reactor core modelling code in many ways, and numerous
efforts have attempted to do so by providing a stepping stone for future efforts [1]. What
distinguishes the SHARP effort from others is the goal of flexibility in the physics model and
implementations, underlying discretization types, multi-fidelity resolution and flexible software
options supported by the framework. We begin by describing the components that make up the
SHARP coupled multi-physics code framework, and we then describe necessary modifications to
integrate existing physics components into this framework.

As stated in §1, the ‘bottom-up’ approach lends itself naturally to leverage existing
well verified libraries such as the Mesh-Oriented datABase (MOAB [22]), for handling and
manipulating the discrete mesh representation, the coupled physics driver, Coupled Physics
Environment (CouPE), which is built on a state-of-art scalable solver library (PETSc [23])
to provide an array of coupling strategies, controllable with command-line options (no
recompilation). Using an existing physics code in this system requires that the system support
whichever mesh type(s) the individual physics natively uses. The physics models can retain their
own native representation of the discrete mesh, which gets transferred to and from MOAB’s
representation through a mesh adaptor or alternatively, it can use MOAB internal representation
directly through the language interoperable interfaces.

In practice, the coupled system may be solved on multiple physics meshes, each of which
models part or the entire physical domain of the problem but resolving relevant spatial scales
pertaining to a single physics. In order to perform efficient coupled calculations, the results must
be transferred from the physics/mesh on which they are generated (source) to the physics/mesh
for which they provide initial or boundary conditions (target) due to nonlinearity introduced
by physics coupling. ‘Two-way’ transfer is required in cases where the physics depend on
each other’s solution fields, for example in reactor analysis where neutronics computes total
fission heat generation based on material properties that are temperature dependent, which are
computed by thermal-hydraulics component using the heat generation source term computed
by neutronics.

Figure 3 illustrates the schematic of the SHARP framework used in this paper. MOAB provides
a representation of the meshes, and MBCoupler (a MOAB based tool for parallel solution data
transfer [24]) to interpolate (or via L2 projection) each dependent physics component solution
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Figure 3. Depiction of the SHARP framework, with MOAB as data backplane and CouPE driving the standalone or coupled
physics calculations. (Online version in colour.)

from the source to the target, with appropriate conservation prescriptions [25]. The CouPE
library is responsible for implementing multi-physics coupling methods to consistently and
accurately couple the different components, in order to solve the nonlinear reactor-physics
problem. The combination of these tools provides the basis for the SHARP component-
based framework.

(a) Mesh-Oriented datABase
MOAB is a library for query and modification of structured and unstructured mesh and field
data associated with the mesh [22]. MOAB can represent all entities typically found in the finite-
element (FE) zoo, as well as polygons, polyhedra and structured meshes. MOAB provides parallel
functionality for resolving entity sharing and ghosting between processors, with sharing and
ghosting information available as annotations on the local mesh [26].

The data model in MOAB consists of four fundamental data types:

— Entity: basic entity in the discrete model, e.g. vertex, quadrilateral and tetrahedron.
— Entity set: arbitrary collection of entities and other sets.
— Interface: database object or instance from an implementation point of view.
— Tag: set of data annotated on objects of any of the other three data types.

This data model, while simple, is flexible enough to represent the necessary data to run
coupled physics simulations. In particular, data tags can be used to store both fine-grained
solution data on individual vertices and elements and coarse-grained annotation of sets to
identify them as boundary conditions, material types or processor partitions. With such a uniform
mechanism to push and pull data through the MOAB mesh layer, a clear physics abstraction can
be created to transfer the solution from a source physics mesh to a target physics mesh, to be used
as a source term or to evaluate dependent parameters.

One of the critical aspects in assembling a multi-physics modelling code is mapping the
results from one physics domain to another. We use MOAB as a ‘data backplane’ to link
physics through their spatial domains; and we use MBCoupler to project coupled physics fields
between those domains. MBCoupler has been demonstrated to be accurate and was recently
shown to have more than 65% strong scaling up to 262 000 processors on the BG/Q (Mira at
Argonne). This tool allows the source and target meshes to be partitioned and distributed across
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processors in a way that is performance optimized for the individual physics associated with the
mesh. Target-to-source mesh point location is performed in parallel, with bounding box-based
acceleration used to determine possible source mesh processors containing every point and with
KD-tree (or optionally BVH-tree) decomposition used locally on each processor. MBCoupler can
transfer solutions using piecewise linear and quadratic FE shape functions along with options
to use spectral element (SE) shape functions depending on physics discretizations. In this paper,
MBCoupler is used to map the results computed by one physics module onto the discrete mesh
used by another, in order to evaluate the nonlinear terms in the tightly coupled, successive
iterative splitting scheme.

In the SHARP framework, we have implemented MOAB interfaces to several different physics
components that are relevant to fast reactor physics analysis.

(b) CouPE
CouPE aims to enable scalable and extensible coupling of different physics components that are
nonlinearly dependent on each other. The SHARP multi-physics framework for solving reactor
analysis problems employs validated and verified efficient mono-physics codes with MPI-level
parallelism to implement several coupling strategies including OS and tightly coupled, iterated
methods. The current design of CouPE is intended to satisfy the need for a loosely coupled
software framework even when the physical phenomena are strongly coupled to each other.

The motivations in designing CouPE are the following:

(i) Use existing libraries and physics codes in order to minimize development time and
leverage man-years invested in these tested codes.

(ii) Enable a flexible and accurate data exchange framework between codes in a mesh-,
numerics- and physics-aware fashion; in other words, data exchange while maintaining
consistency, accuracy and conservation of key fields that contribute to inaccuracy and
stability issues in coupling.

(iii) Provide flexible data containers and physics objects that facilitate and simplify the
evaluation of the nonlinear residuals representing the fully discrete PDE for different
physics components.

(iv) Provide the ability to use different kinds of multi-physics coupling strategies within the
same architecture with runtime object polymorphism, avoiding recompilation for each
problem.

CouPE aims to integrate all the physics components under a unified framework in order to
exchange the solution from one physics to another (interfaces to MBCoupler) and converge the
coupled physics solution fields to user-specified tolerances (typically 10−4 – 10−8 [27]) without
sacrificing numerical stability or accuracy. CouPE provides the necessary components and layers
to wrap existing physics codes or write a complete description of a physics problem from
scratch in order to solve phenomena of interest, that is, to enable both bottom-up and top-down
approaches. The library provides the necessary tools to quickly implement any of the popular
variations of an OS coupled solver (Marchuk, Strang and Yanenko among others) or a more
rigorous matrix-free inexact-Newton solver with a JFNK technique [20].

Similar to the PETSc library, CouPE is designed to allow the user to specify command-line
arguments in order to control the dynamic behaviour of the coupled solver. The parameter
specifications include the input for individual physics components, input mesh parameters, and
type of solver along with ability to enable dynamically choosing the fidelity of the physics being
coupled. This is made possible by abstracting out behaviour of the core object until runtime.
The advantage of such a method is that the implementation of the coupled physics driver and
the accompanying physics components need to be compiled, linked and verified only once and
then can be re-used in a variety of different coupling methods (e.g. loose versus tight coupling).
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The coupled fields are iterated until convergence to user-required accuracy for any problem of
interest. Results obtained by using this coupled physics driver based on the CouPE library are
shown in §3.

(c) PROTEUS
PROTEUS is a high-fidelity deterministic neutron transport code [28] (formerly UNIC),
based on the standard second-order even-parity formulation [29] which is obtained from
reformulation of the multigroup Boltzmann transport equation in the steady-state (SS) form
shown below:

Ω .Vψg(r, Ω) +Σt,g(r, T, ρ)ψg(r, Ω) −
G∑

g′=1

∫
Ω ′
Σ

g′→g
s (r, Ω ′.Ω , T, ρ)ψg′ (r, Ω ′) dΩ ′

= χ
g
p

keff

G∑
g′=1

νΣf ,g′ (r, T, ρ)φg′ (r) ∀g ∈ [1, G], (2.1)

where ψg(r, Ω) and φg(r) are the angular and scalar flux for energy group g, respectively, Σt,g is

the total material cross section in energy group g at position r, Σg′→g
s is the differential scattering

cross section representing the probability that a particle at r in energy group g′ travelling in
the direction Ω ′ is scattered into energy group g with direction dΩ about Ω , and χ

g
p is the

fission spectrum.
Expressing the angular flux in its even (ψ+

g ) and odd (ψ−
g ) parity components, we have

ψg(r, Ω) =ψ+
g (r, Ω) + ψ−

g (r, Ω), (2.2)

where

ψ+
g (r, Ω) =ψ+

g (r, −Ω) and ψ−
g (r, Ω) = −ψ−

g (r, −Ω). (2.3)

The final form of the even-parity equation is obtained by substituting the definitions
equation (2.2) and equation (2.3) into equation (2.1) and algebraically manipulating the resulting
equations to eliminate the odd-parity flux [29,30]. After applying continuous FE spatial
discretization and discrete ordinates treatment of the angular terms, the discrete form of
equation (2.1) and the even-parity equation resemble a generalized eigenvalue problem. The
fundamental (dominant) eigenpair, i.e. eigenvalue keff and its corresponding eigenmode φ(r),
provides critical information for the design of nuclear reactors. Since the scalar flux solution is
obtained as a solution of the eigenproblem, only the shape of the flux can be ascertained and the
magnitude is determined based on the total power load chosen during operation.

A nuclear reactor core is typically composed of hundreds of different materials and isotopes,
each with different cross sections. The cross section of the material in equation (2.1) is greatly
affected by the temperature and density of the material and depends on the energy of the incident
neutron. In fully heterogeneous simulation models, the material cross sections are pre-processed
and collapsed to the number of energy groups as required for the simulation by solving several
fine-scale problems in different configurations so as to preserve the net reaction rate in the core.
These cross sections are usually also tabulated, or provided in a closed form approximation,
as a function of fuel and coolant temperatures (extension to additional parameters, such as
boron concentration, void history, control rod history, etc., is straightforward). The tabulated
cross-section values are obtained using table look-up and Rp interpolation, where p is the total
number of parameters used. In this paper, we use the effective cross-section generation capability
provided by MC2-3 code [31] that can collapse ultrafine group resolution of the ENDF data to
multi-group data usable for problems of interest.

PROTEUS has a hierarchical multilevel solver based on space–angle–energy parallelism which
internally uses PETSc’s Krylov methods and SSOR preconditioners. This solver is capable of
using several existing petascale parallel machines with demonstrated scalability of over 70%
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(strong scaling) at over 250 000 processors (BlueGene/P [32]). Recent implementations have
also focused on enabling a two-grid multigrid preconditioning technique [33] to accelerate the
solver. Written primarily in Fortran90, the interfaces to MOAB enable in-memory parallel mesh
manipulation and transparent solution access from thermal-hydraulic and structural mechanic
physics to account for the nonlinear feedback effects. The transients simulated in this paper use
a quasi-static time-dependent capability [29] that requires recomputing the eigenproblem for the
flux shape, while using point reactor kinetics equations to update the evolution of the total power
in the reactor.

(d) Nek5000
The Nek5000 computational fluid dynamics solver is based on the SE method developed by
Patera [34]. For the underlying equations in the solver, we consider the conservation laws
assuming incompressibility constraints and a constant fluid density. This assumption is a good
approximation for the liquid sodium being modelled in the demonstration problems, and can
be easily extended to mildly compressible flows (M< 0.3). Then, the conservation of mass,
momentum and energy equations are written as

∇ · u(r, t) = 0, (2.4)(
1
∂t

+ u · ∇
)

u(r, t) = − 1
ρf

∇ · p + ∇ · (ν∇u(r, t)), (2.5)

(
∂

∂t
+ u · ∇

)
(ρfCpfT(r, t)) = ∇ · (λf∇T(r, t)) + q′′′

f (r, t) (2.6)

and
∂

∂t
(ρsCpsT(r, t)) = ∇ · (λs∇T(r, t)) + q′′′

s (r, t), (2.7)

where u is the velocity field, r are the spatial coordinates, t is the time, ν is the kinematic viscosity,
Cp is the heat capacity, T is the temperature, λ is the conductivity, p is the pressure, ρ is the density
and q′′′

s and q′′′
f are the volumetric heat generation rates in the solid and fluid, respectively. The

subscripts f and s refer, respectively, to the coolant and the solid components.
The open-source Nek5000 code supports two different formulations for spatial and temporal

discretization of the incompressible Navier–Stokes equations: the PN − PN−2 method [35–37] and
PN − PN formulation [38,39]. Both formulations yield a decoupled set of elliptic problems to be
solved at each time step including a Poisson equation for the pressure. For marginally resolved
large-eddy simulation (LES) cases, we find that the higher order pressure approximation of the
PN − PN methodology tends to yield improved solution estimates, and this is consequently the
formulation used for the calculations performed here.

Time integration is performed using a backward differentiation/extrapolation scheme of the
second order (BDF2/EXT2) using variable time stepping. The Courant number is maintained
below 0.5, with time steps in the range 10−3 s to 10−6 s. The Poisson equation for the pressure, the
most computationally expensive stage, is solved using an AMG preconditioner. Nek5000 does
not rely on external linear algebra packages. Nek5000 is massively parallel and employs the MPI
standard for parallelism.

Typically, the solution of thermal-hydraulic modelling of reactor cores involves the solution of
a modified conjugate heat transfer problem in rod bundles (fuel assemblies). The heat generated in
cylindrical pins containing the nuclear fuels is removed by an external coolant flowing in parallel
to the pins. In addition to the equation described by (2.7), additional transport equation may be
solved to introduce turbulence modelling.

With a solution to equation (2.1), the volumetric heat generation rate q′′′
s estimated by

equation (2.8) is used as the primary source term in the energy balance equation

q′′′
s (r, t) =

G∑
g=1

Σf ,g(T, ρ)Wg

∫
dΩ ′ψg(r, Ω̂ ′, t), (2.8)
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where Σf ,g(T, ρ) is the temperature- and density-dependent fission cross section of the material,
Wg is the group-dependent power production per fission reaction and ψg is the angular flux for
energy group g.

The boundary conditions for the described conjugate heat transfer problem in rod bundles are
standard and are applied at the inflow, outflow and wall surfaces as follows:

— The inlet fluid surface has uniform prescribed velocity and fixed temperature.
— The inlet and outlet solid surfaces of the duct have an adiabatic temperature

boundary condition.
— Standard outflow boundary conditions are specified at the outlet fluid surface.
— The wall surfaces of the pins and the inner surfaces of the duct have a non-slip velocity

boundary condition.
— The outer surfaces of the duct have an adiabatic temperature boundary condition.

(e) Implementation notes
At the most basic level of capability, integration of a given physics code into this system requires
reading the mesh along with the associated data and writing solution fields back onto the mesh
after their computation. This enables the interfaces in CouPE to transparently interface with
the physics solvers and to pull/push the necessary data to drive the global nonlinear solver
to convergence.

The convergence criteria for the solvers are determined based on the actual L2 global
error of the numerical solution Unum computed on the corresponding physics mesh using the
following definition:

‖Error‖2 = ‖Uref − Unum‖2 = 2

√
1

|Ω|
∫
Ω

(Uref(r) − Unum(r))2 dr, (2.9)

where Ω is the spatial domain and Uref is the reference solution computed on a refined/resolved
spatio-temporal grid.

3. Results
Verification of single-physics codes is a daunting task, and implementing the process for
a complex multi-physics simulation requires quantifying errors at many stages. The spatial
projection errors that occur when the solution field is transferred from one physics to another
dominate the coupling errors along with the treatment of the nonlinear terms. In this paper, we
present two demonstration problems that will help determine the accuracy of the solvers. First,
a simplified hexagonal assembly (SAHEX) is taken and we test the data transfer mechanism for
optimal accuracy and consistency as the source and target meshes are refined. Then, a realistic
assembly that was employed in the EBR II reactor (the instrumented XX09 assembly) is solved
for various SS and quasi-static transient problems, in order to investigate the advantage of using
tightly coupled solvers to numerically resolve the relevant scales in the problem. The boundary
conditions for the problems described are summarized in §2.

(a) Initial conditions and transient specification
The neutronics solution without any coupled feedback is essentially a linear generalized
eigenvalue problem that computes the fundamental eigenvalue, eigenmode pair. The neutronics
solver assumes constant material-dependent temperature/density values to initiate computation
of cross sections which are nominal values obtained with the initial conditions (ICs) from
thermal-hydaulic solver. Owing to the nonlinear nature of the coupled physics, the hydraulics
solver assumes an axially cosine shape as the heat source to compute the thermodynamically
equilibrium solution to a user specified tolerance.
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Figure 4. SAHEX problem geometry and sample mesh. (Online version in colour.)

Each problem was tested in a two stage process:

— compute coupled initial SS solutions at rated conditions and
— perform a quasi-static transient where the power, temperature and density evolve based

on the change in total reactivity.

The type of transient examined in the paper is a simplified loss-of-heat-sink, where the
temperature of the fluid at the inlet boundary is specified as a function of time and the
evolution in the coupled fields is computed. This simulates an accident scenario when the heat
exchangers fail to remove excess heat from the coolant, thereby increasing the inlet temperatures
steadily, causing feedback effects from different sources to interact nonlinearly between
the physics:

T(t) =

⎧⎪⎪⎨
⎪⎪⎩

T0, t< t0

T0 + α ∗ T0 tanh
(

t − t0

δt

)
, t ≥ t0,

(3.1)

where t0 is the transient initiation time, T0 is the initial converged temperature solution, δt is the
duration of the transient at the inlet and α is the damping parameter to control the magnitude of
the perturbation (typically 0.2).
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Figure 5. SS solution distributions. (a) Power profile (W) and (b) temperatures (K).

(b) Simplified hexagonal fuel assembly
The SAHEX problem geometry was designed to an outer duct wall that encloses six fuel pins
and a control pin in the centre. Meshes with varying resolution were used for neutronics and
thermal-hydraulics solvers to resolve the spatial scales in the model and the geometry consisting
of fuel pins, cladding, control rod, steel can and sodium coolant. This model is carefully chosen to
create a verification test case for solving realistic assemblies to be addressed later. The SAHEX
geometry and a representative resolved physics mesh are shown in figure 4. The input data
for the neutronics solver were generated a priori using the MC2 to obtain parametrized 9-
group cross sections as a function of temperature and density. Since this is an isolated assembly
model, a vacuum boundary (non-reentrant) condition is applied on the top and bottom and
reflective boundary condition on all other outer surfaces of the neutronics model. The velocity
and temperature boundary conditions are applied at the bottom surface of the model (Dirichlet for
the fluid, Neumann for the solid) and outlet boundary conditions are applied at the top surface.
In terms of the mesh resolution, the hydraulics solver uses a comparatively coarser mesh than
neutronics, consistent with the use of quadratic elements and nature of spectral discretization.

In this section, the coupled results for the simplified single assembly are shown first and then
the verification studies performed on this problem will be discussed.

(i) Initial conditions

Following the procedure detailed in §3a, the SS solution fields for the individual physics were
computed. The profile of the integral power based on the angular flux computed from solving
equation (2.1) and the temperature profile from thermal-hydraulic solver are shown in figure 5.
The decoupled profiles are physically meaningful and provide a good initial guess for coupled
physics solver to obtain an SS solution. It is observed that the peak of the cosine shape of the
power distribution shifts towards the inlet of the core due to lower material density at the top
of the assembly, while the peak temperatures are observable near the outlet since the coolant
temperature is monotonically increasing.

(ii) Solution verification

The convergence criteria for the neutronics and hydraulics solver were specified to be
rtolNE = 10−7 and rtolTH = 10−4, respectively, in order to capture relative variations in the
fine-scale scalar flux and temperature profiles. CouPE computes the rate of convergence
and determines the stopping criteria for the coupled physics iteration. Every call to the
thermal-hydraulic solver is preceded by a conservative solution projection of the power solution
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Figure 6. Power solution transferred from neutronicsmesh to thermal-hydraulics. (a) Coarse resolution and (b) fine resolution.

Table 1. keff spatial convergence.

(computational time)/
Nele characteristic length (Picard iteration) (s) keff error (%)

7590 0.7144 44.64 0.67387473 0.42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54740 0.3573 63.39 0.67671801 0.114
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

437920 0.1791 84.27 0.67751902 0.0315
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3503380 0.0895 162.93 0.67775429 reference
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

field computed in neutronics, which is used to recompute the volumetric power source in
equation (2.7).

It is essential to rigorously verify spatial accuracy constraints in order to conserve the total
energy specified for the problem configuration. We performed several successive refinements
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Figure 7. keff transient profile as a function of feedback and temporal resolution.

of the neutronics and hydraulics meshes, and quantified the error convergence in the solution
projection and parallel data transfer algorithms. The results based on a reference mesh solution
for the convergence of keff are tabulated in table 1. From the error convergence of uniform
refinements of the mesh, it is evident that the numerical order of convergence of the coupled
solver is nearly second order O(�x2) as expected, since the neutronics discretization is based on
linear Lagrange basis functions. It is also imperative to note that the parallel performance of the
solvers (on 32 processors) measured using the computational cost per Picard iteration (comprising
the individual physics solvers and the two-way solution transfer of dependent fields) increases
nearly linearly with the number of degrees of freedom.

The projected power solution at the end of the SS iteration from the source neutronics mesh to
the target thermal-fluid mesh, after applying conservation prescriptions, is shown in figure 6a,b
for a coarse and fine spatial resolution. It is evident from the scales and the integral of the profile
distribution that the global energy is conserved during field transfers.

(iii) Coupled physics calculations

Once the ICs are converged, the loss-of-heat-sink simulation is initiated at t = t0, by updating
the inlet boundary conditions as shown in equation (3.1) to increase inlet boundary temperature
from 600 to 720 K during the transient. The total power in the assembly is specified by the user
and power distributions are normalized accordingly.

In all the cases, the number of subcycling steps performed in thermal-hydraulics was specified
to resolve the transient change in temperature. Several transients have been performed to test for
sensitivity of the coupled field solutions to different feedback effects. Figure 7 shows the change
in keff as a function of normalized time for different types of coupled feedback effects optionally
turned on. As the frequency of coupling is increased, the accuracy of the coupled physics solution
improves since the computed criticality converges towards the reference. The flow time of the
sodium through the assembly is 0.89 s (characteristic time scale), and the overall time steps are
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Figure 8. Transient evolution of coupled field profiles at the beginning, during and at the end of the perturbation. (a) Power
distribution (W) and (b) temperature (K).

reduced consistently to resolve the spatial and temporal scales in successive simulations starting
with�tcoarse = 0.02 s. The criticality constant keff rapidly converges as the number of time steps is
halved while approaching the reference solution as O(�t). Note that feedbacks based on both
temperature and density are necessary to show the complex nonlinear coupling between the
neutronics and thermal-hydraulics physics for this test problem since the case where only Doppler
feedback is considered shows larger sensitivity to the inlet temperature change. In other words,
the density and Doppler expansion feedback are competing effects as validated from theory and
experimental observations.

The total power decrease in the assembly as the transient progresses can be observed in
figure 8a. The corresponding evolution of the temperature profiles is shown in figure 8b. Note
that the significant change in power profile corresponding to only a minor penetration of the
high temperature front within the domain indicates a very fast response (high sensitivity) to the
boundary condition in the system.

The coupled physics simulation capability with the SHARP framework was tested on the
SAHEX problem for a loss-of-heat-sink transient and the results obtained have been verified
by spatial and temporal solution convergence studies. The sensitivity tests lead to important
conclusions on:

(i) the time-step size necessary for this transient to maintain accuracy and
(ii) the importance of the inclusion of all types of feedback effects.
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Figure 9. X–Z cross section of the Doppler temperature profile.

(c) Realistic benchmark problem: XX09 assembly
Detailed specifications for the XX09 assembly can be found in [40,41]. Owing to the nature of the
physics discretization (and similar to the SAHEX problem), the neutronics mesh is much more
resolved than the corresponding fluid mesh in order to capture the heterogeneity in the geometry.
The boundary conditions for the XX09 assembly problem for both neutronic and thermal-
hydraulic solvers are similar to the SAHEX problem. The ICs are obtained by converging the
PSS problem without any perturbations using the procedure described in §3a. The coupled loss-
of-heat transient problem is simulated with this problem to observe spatio-temporal sensitivity
and nonlinear feedback effects.

(i) Coupled solution results

The coupled physics results for the XX09 assembly problem use sub-cycled thermal-hydraulic
solvers (5000 time steps, with a step size of�t = 6 × 10−6). This step size was chosen to resolve the
temporal evolution of the flow and temperature fields to approach an SS solution. A perturbation
of the inlet temperature (with α = 0.2 in equation (3.1) equivalent to a change of 120 K) is
introduced and simulation is continued to convergence of a final SS condition. In the initial stage
of the transient, a front with increased temperature slowly advances through the assembly as
shown in figure 9. As expected, it was observed that the criticality keff reduces as the transient
proceeds, owing to the negative feedback effect from the increase in fluid temperature flowing
through the domain. The Doppler temperature increase is evident by observing the change in
the profile at the axial centre of the assembly as shown in figure 10, which also contributes to
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Figure 10. Temperature profile in the axial centre of the assembly.

decrease the sodium density, thereby adding to the negative feedback effects in the assembly as
the temperature wave propagates.

Figure 10 shows the relative change in power distribution between the final state of the
transient and the initial SS result to quantify power sensitivity with respect to inlet temperature.
In the second stage of the transient, the temperature increases in the fuel region producing the
steepest change in reactivity and hence direct change in power distribution (figure 11). The
results obtained from the simulation of XX09 assembly were verified to convergence towards
reference solution by successive refinements to resolve the spatio-temporal scales in the physics.
A high-resolution video of the loss-of-heat-sink transient for the XX09 assembly problem has
been hosted externally [42]. It shows the detailed evolution of the temperature wave propagation
along the axial length and the strong nonlinear feedback effects that quickly stabilize the
power profile to a final equilibrium. Several representative meshes are also provided in order
to aid readers to replicate and verify the nonlinear transient with their own coupled physics
modelling codes.
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4. Conclusion
The SHARP framework has been designed to tackle explicitly heterogeneous reactor assembly
and full core geometry configurations and has been demonstrated to be convergent, and accurate
in the implementation of the algorithms and the solver. The capability of the framework to flexibly
choose different coupling schemes also makes it an important tool to determine the optimal solver
method to resolve relevant scales for problems of interest. Using existing physics components
expands the scope of SHARP to encompass different physics models with varying fidelity in
equations, discretizations and requirements through a uniform abstraction layer. A structural
mechanics solver, Diablo [43], is currently being integrated to analyse material deformation in
the reactor due to large variations in the core temperature profile. Further investigations are also
necessary to measure the overall parallel (MPI) performance of the tools for a multi-assembly
problem on petascale architectures.

Data accessibility. The supporting data for the problems described in the paper are hosted by a public git
repository [42].
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